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lnstitut f i r  Meteordogie, Freie Universitiit Berlin, Thiclallee 50, D-1000 Berlin 33, 
Federal Republic o f  Germany 

Received 25 February 1991 

Abstmd. We found that cenain solutions of some nonlinear panial differential equations 
can be obtained easily by an iteration'methad. As examples, the Kortewg.de Vries equation 
(also the 'modified' version), the ID and 2D Burgers equation and the Kadomtsev- 
Petviashvili equation have been studied. For the Liouville equation we found the general 
solution. 

In this letter we describe an iteration method which in some cases is able to calculate 
exact solutions of nonlinear partial differential equations. In contrast to the successive 
approximation (Picard 1890) we look for the occurrence of the non-differentiated 
function U (typically in an advective term) and solve for it. The resulting differentiations 
can be performed efficiently by a computer. Clearly, we have limited capabilities of 
incorporating boundary conditions. At least we can use some free parameters which 
can be adjusted in the end if they are not eliminated during the iteration process. As 
initial guesses we try simple functions, e.g. waves. 

The main point is that in some cases our method converges rapidly (after typically 
two steps) to an exact solution. For one example we could even find the general 
solution. Unfortunately, no convergence properties are known and the observed 
behaviour could be a mere accident. We will see that the method shows up as a 
generalization of trying an ansatz. The discussion of the physical origins and the 
applications will be restricted to a minimum (see Whitham 1974, Dodd 1982). We will 
also only briefly refer to the solution methods for the equations studied, e.g. spectral 
transform and Backlund transform (see Drazin 1983, Calogero 1988, Lamb 1980). 

Let us begin with the well known Korteweg-de Vries (Kdv) equation (Korteweg 
and de Vries 1895) 

n 

U ,  - ~ u u ,  f U ,  = 0. (1) 

Originally, this equation was used to describe surface water waves. Later on it was 
found that it can be applied to many problems in different areas. The initial value 
problem can be solved via the spectral transform. To apply our method we solve for 
U and define the iteration scheme 

n a o .  (2) U ( " + l ) - ?  -6[Uln)+ u : ; y u p  

The simple guess U(')= log(x-cr) ,  as well as the powers ( x - c t ) ' ,  converge within two 
steps to the moving singularity 

U = - c / 6 + 2 ( x - ~ t ) - ~ .  (3) 
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To avoid that the term u Z x  in (2) would vanish at the beginning, we had to use powers 
k>3ork<O.Thenwetriedthewaveansatz u")=cos[a(x-ct)]~',e.g. k = - I .  Within 
two steps we arrived at 

(4) 

By demanding that u + O  for IxI+co, which gives a =i&/2, (4) becomes the well 
known soliton 

U =4a2/3 - c /6+2a2 tan'[a(x- ct)]. 

2 

More generally, the Jacobian elliptic functions (Abramowitz and Stegun 1970) sn, cn, 
dn(+,m),+=a(x-ct),allconvergeto -2a2mcn2(+, m)+&2(2m-1)-c/6.Unfortu- 
nately, we could not obtain multi-soliton solutions by starting with simple combinations 
-f- ..,-.,pc 
"L ""I.,.,. 

Our next example is the modified Kdv equufion (Wadati 1973) 

u8 +6u2u, + U,,, = 0 ( 6 )  

which is also solvable by the spectral transform. This is interesting because of the 
occurrence of the square of U. We had difficulties to implement procedures which 

with U linear by dividing (6) by ux and differentiating with respect to x 
either simply divide h y  U or ,.!Se the square root, However, we coo!d get an equation 

We have to keep in mind that due to the differentiation, we will solve ( 6 )  with an  
zrbitrzry time-dependen! function f!!) 

We started with U(')= b/cos[a(x-ct)] and found an alternating behaviour of the 
iteration unless a = *ib. On the other hand, the condition thatf(r) in (8) has to vanish 
yielded c = b2, so finally (Zabusky 1967) 

u=bsech[bjx-b' i j j .  (9  j 

Here we recognize that the common method of trying an ansatz is incorporated. If we 
had started with the correct functional form containing free parameters, these would 
have been determined already at the first step by the condition that we are at a 
fixed-point of the iteration. 

Let us now turn to the Burgers equation (Burgers 1948) which served as an aid for 
the understanding of turbulence. It is derived from the Navier-Stokes equations by 
neglecting the pressure. The Burgers equation can he mapped onto the diffusion 
equation through the Hopf-Cole transformation (Hopf 1950). Firstly, we consider the 
ID case 

u,+uu,=u,,. (10) 

The waves ~ ' ~ ' = s i n [ a ( x - c t ) ]  lead to 

U = c +2a tan[ a ( x  - ct)] (11) 

from which a kink-type solution can be constructed with a imaginary. Let us mention 
that U(') = log(x - ct) and U") =tan[ a(x/  t - e)] reach fixed points as well. 
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A kink solution can also be found for the ZD Burgers equation 

U, + uu,+ vuv - U= - uvy = 0 

U# + UU, + vuy - U,, - U, = 0. 

We write these equations in matrix form and solve for (U, U) 

U #  - U, - UYY 

U, - Ox* - U, 
If we start with do) = U ,  sinh( 4,) and U") = u2 sinh($,), $# = x+ b,y -f;f we obtain 

U = [2(1+ b:)b, tanh($,) -2(1+ b:)b, tanh($,)+ b,f2 - b,f,]/(b, - b,) 

U = [2(1+ b:) tanh($J -2(1+ b:) tanh($2)+f-fi]/(b2- bd. 

The fourth example is the Kudomiseu-Peiuiashuili equation (Kadomtsev and 
Petviashvili 1970). This equation is denoted as a two-dimensional version of the 
Kdv equation with solutons in one direction only 

We could not find solitons, but a moving singularity through the ansatz U(')= 

log(kx + /y - or). The iterates converged asymptotically 

U ( n ) =  S'"'k*/(kx+ ly - o t ) 2 - i o / k + f / 2 / k 2 .  (15) 

For example S'"=2.131, S(")=1.982 and S''5'=2.002, from which we derived the 
(correct) value S = 2. 

Our last example, the Liouuille equution (Liouville 1853), written for the characteris- 
tic variables x and r, 

uz, =e"  (16) 

is outstanding because we were abie to find the exact soiution. We used the iteration 
scheme U("+') =log( U$)) and tried a few guesses for U") containing arbitrary functions 
X = X ( x )  and T =  T(f). We found that u'o'=log[X+ TI, converged to the exact 
solution 

within two steps. The solution (17) was derived by Liouville in 1853 (compare also 
the Backlund transform, e.g. Drazin 1983). 

Let us summarize that, by a rather simple method, a few exact solutions of some 
nonlinear partial differential equations can be derived. We think that the method, 
which incorporates the common ansatz method, might be applied successfully to further 
cases, especially if some information about the solution is available. 

Discussions with P NCvir, Professor H Fortak and Professor H Lange are gratefully 
acknowledged. I would like to thank M Greckl for proofreading. 
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